Integration of Artificial Intelligence, Computational Thinking, and Robotics in Primary Education: A Case Study in Puerto del Rosario
DOI:
https://doi.org/10.55040/c03ws865Keywords:
primary education, STEAM model, artificial intelligence, programming and robotics, problem-based learning, sustainable cityAbstract
In today’s primary education landscape, integrating digital technologies, active methodologies, and artificial intelligence (AI) presents both challenges and opportunities for developing essential 21st-century skills. This study explores the difficulties students face in acquiring digital competencies and engaging with active approaches such as Problem-Based Learning (PBL), which can hinder academic performance and highlight the need for meaningful, interdisciplinary, and context-driven learning strategies. The main objective is to design an innovative STEAM project that incorporates computational thinking and AI to strengthen problem-solving abilities in primary education. Using educational action research, the project was implemented with 27 students aged 10–11, focusing on the collaborative design of a sustainable city. This approach promoted logical-mathematical learning through digital activities and diverse group work, fostering inclusion, creativity, and skill development. Findings indicate that combining PBL with programming, robotics, and AI enhances critical thinking, autonomy, and STEAM-related competencies. However, successful implementation requires specialized teacher training and must address the ongoing challenge of the digital divide in vulnerable contexts. The use of SWOT and CAME frameworks proved essential in translating reflective analysis into strategic action. This experience contributes to educational research by offering a replicable model for strengthening key competencies in similar school settings.
References
Adnan, M., Tondeur, J., Scherer, R., & Siddiq, F. (2024). Profiling teacher educators: Ready to prepare the next generation for educational technology use? Technology, Pedagogy and Education, 33(4), 527–544. https://doi.org/10.1080/1475939X.2024.2322481
Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52–62. https://doi.org/10.61969/jai.1337500
Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978–988. https://doi.org/10.1016/j.compedu.2011.10.006
Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. International Society for Technology in Education. https://books.google.es/books/about/Flip_Your_Classroom.html?hl=es&id=nBi2pwAACAAJ&redir_esc=y
Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking for young children. Early Childhood Research & Practice, 12(2), n2. https://eric.ed.gov/?id=EJ910910
Bers, M. U. (2020). Coding as a playground: Programming and computational thinking in the early childhood classroom. Routledge. https://doi.org/10.4324/9781003022602
Bransford, J., Brophy, S., & Williams, S. (2000). When computer technologies meet the learning sciences: Issues and opportunities. Journal of Applied Developmental Psychology, 21(1), 59–84. https://doi.org/10.1016/S0193-3973(99)00051-9
Buckingham, D. (2020). Epilogue: Rethinking digital literacy: Media education in the age of digital capitalism. Digital Education Review, (37), 230–239. https://doi.org/10.1344/der.2020.37.230-239
Camacho-Tamayo, E., & Bernal-Ballén, A. (2024). Educación STEAM como estrategia pedagógica en la formación docente de ciencias naturales: Una revisión sistemática. Edutec. Revista Electrónica de Tecnología Educativa, (87), 220–235. https://doi.org/10.21556/edutec.2024.87.2929
Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: A model for creative computational problem solving. International Journal of STEM Education, 7(1), 39. https://doi.org/10.1186/s40594-020-00238-z
Dillenbourg, P., & Tchounikine, P. (2007). Flexibility in macro‐scripts for computer‐supported collaborative learning. Journal of Computer Assisted Learning, 23(1), 1–13. https://doi.org/10.1111/j.1365-2729.2007.00191.x
Eguchi, A. (2014, July). Robotics as a learning tool for educational transformation. In Proceedings of the 4th International Workshop Teaching Robotics, Teaching with Robotics & 5th International Conference Robotics in Education (Vol. 1, pp. 1–6). Padova, Italy. https://doi.org/10.4018/978-1-4666-8363-1.CH002
Gómez, B. R. (2004). La investigación-acción educativa y la construcción de saber pedagógico. Educación y Educadores, (7), 45–56. https://dialnet.unirioja.es/servlet/articulo?codigo=2041013
Guilabert, M., Sánchez-García, A., Asencio, A., Marrades, F., García, M., & Mira, J. J. (2024). Retos y estrategias para recuperar y dinamizar la atención primaria. Metodología DAFO (Debilidades, Amenazas, Fortalezas y Oportunidades)-CAME (Corregir, Afrontar, Mantener y Explotar) en un departamento de salud. Atención Primaria, 56(3), 102809. https://doi.org/10.1016/j.aprim.2023.102809
Grover, S. (2024, March). Teaching AI to K–12 learners: Lessons, issues, and guidance. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education (Vol. 1, pp. 422–428). https://doi.org/10.1145/3626252.3630937
Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235–266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
Huang, X., & Qiao, C. (2024). Enhancing computational thinking skills through artificial intelligence education at a STEAM high school. Science & Education, 33(2), 383–403. https://doi.org/10.1007/s11191-022-00392-6
Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary perspective: Integrating computational thinking in K–12 science, technology, engineering, and mathematics education. Journal of Science Education and Technology, 29(1), 1–8. https://doi.org/10.1007/s10956-019-09803-w
Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación (LOMLOE). (2020). Boletín Oficial del Estado. https://www.boe.es/buscar/act.php?id=BOE-A-2020-17264
Ley Orgánica 1/1996, de 15 de enero, de protección jurídica del menor. (1996). Boletín Oficial del Estado, núm. 15, 1244–1253. https://www.boe.es/buscar/act.php?id=BOE-A-1996-1069
Lyon, J. A., & Magana, A. J. (2020). Computational thinking in higher education: A review of the literature. Computer Applications in Engineering Education, 28(5), 1174–1189. https://doi.org/10.1002/cae.22295
Nogueira Rivera, D., Medina León, A., Medina Nogueira, Y. E., & El Assafiri Ojeda, Y. (2024). Matriz DAFO y análisis CAME, herramientas de control de gestión: Caso de aplicación. Revista Universidad y Sociedad, 16(2), 34–45. http://orcid.org/0000-0002-3122-6438
Mills, K. A., Cope, J., Scholes, L., & Rowe, L. (2025). Coding and computational thinking across the curriculum: A review of educational outcomes. Review of Educational Research, 95(3), 581–618. https://doi.org/10.3102/00346543241241327
Onesi-Ozigagun, O., Ololade, Y. J., Eyo-Udo, N. L., & Ogundipe, D. O. (2024). Revolutionizing education through AI: A comprehensive review of enhancing learning experiences. International Journal of Applied Research in Social Sciences, 6(4), 589–607. https://doi.org/10.51594/ijarss.v6i4.1011
Organización de las Naciones Unidas. (2015). Transformar nuestro mundo: La Agenda 2030 para el Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/
Papert, S. A. (2020). Mindstorms: Children, computers, and powerful ideas. Basic Books. https://www.scribd.com/document/267460581/Prensky-M-2001-Nativos-Digitales-Inmigrantes-Digitales
Pertuz, J. M. A., & Carmona, R. J. C. (2024). STEAM para el desarrollo del pensamiento matemático: Una revisión documental. Praxis, 20(2), 2. https://doi.org/10.21676/23897856.5783
Prensky, M. (2001). Nativos digitales, inmigrantes digitales. On the Horizon, 9(5), 1–7.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Dra. Inés María González Vidal, Dra. Carmen Romero García, Diana Fleitas Rodríguez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://creativecommons.org/licenses/by-nc-nd/4.0