Design and validation of an diagnostic instrument for inclution in educative institutions

Authors

DOI:

https://doi.org/10.55040/educa.v3i2.62

Keywords:

Inclusive education, validation, instrument, design, validity, reliability

Abstract

Inclusive education has set attention to people with differences as a quality standard. Every person is different in one of the following dimensions: cognitive, psychological, physicalmotor, or sociocultural. Current international practice urges educational institutions to consider the following principles of inclusion in their operations: (a) everyone has access to every place (regardless of their differences), (b) collaborative attitude when working with people with differences, (c) early intervention to obtain better results, (d) training for intervention with people with differences, and (e) adaptation of contents, equipment, and infrastructure for the care of people with differences. The diagnosis of the inclusion guidelines is one of the strategies that allow the institution, the educational staff, and the families to identify strengths and areas of possible growth toward the ideal level of inclusion. This work presents the design and technical characteristics of an instrument that helps institutions in said diagnosis. For the design and validation of the instrument, several stages were followed, from the theoretical foundation, through the elaboration of the reagents, its content validity through 10 experts, its construct validity with an Exploratory Factor Analysis and Confirmatory Factor Analysis. The result is a model of Educational Inclusion with four scope composed of 21 reagents, which explains 73.3% of the variance. This factorial structure showed a proper adjustment, with adequate reliability, convergent validity and discriminant validity.

References

Anderson, J. C. y Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.

https://psycnet.apa.org/doi/10.1037/0033-2909.103.3.411

Brown, T. A. (2015). Confirmatory factor analysis for applied research. (2a. ed.). Guilford Press.

Comisión Nacional de los Derechos Humanos. (2016). Informe de actividades del 1 de enero al 31 de diciembre 2015. Comisión Nacional de Derechos Humanos. https://informe.cndh.org.mx/uploads/principal/2016/Informe_2016_resumen_ejecutivo.pdf

Cohen, J. (1988). Statistical power analysis for the behavioral sciencies. Lawrence Erlbaum Associates, Inc.

Red AGE. (2010, 13-15 de septiembre). Congreso Iberoamericano de Educación. Metas 2021. Buenos Aires, Argentina.

Cruz Vadillo, R. (2021). Las inclusiones “razonables” en materia de discapacidad en México: política de educación inclusiva. Revista Latinoamericana de Estudios Educativos, 51(1), 91–117. https://doi.org/10.48102/rlee.2021.51.1.200

Elizondo, C. (2020). Hacia la inclusión educativa en la universidad: diseño universal para el aprendizaje y la educación de calidad. Octaedro.

Ferrando, P. J. y Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en psicología. Papeles del Psicológo, 31(1), 18-33. http://www.redalyc.org/articulo.oa?id=77812441003

Fornell, C. y Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104

Hair, J. F., Black, W. C., Babin, B. J. y Anderson, R. E. (2018). Multivariate data analysis (8a. ed.). Cengage Learning.

Harman, H. H. y Jones, W. H. (1966). Factor analysis by minimizing residuals (minres). Psychometrika 31, 351–368. https://doi.org/10.1007/BF02289468

Holmqvist, M. y Lelinge, B. (2021). Teachers’ collaborative professional development for inclusive education. European Journal of Special Needs Education, 36(5), 819–833.

https://doi.org/10.1080/08856257.2020.1842974

Hu, L. T. y Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance

structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118

Lara-Cruz, A., Ángeles-Llerenas, A., Katz-Guss, G., Astudillo-García, C. I., Rangel-Eudave, N. G., Rivero-Rangel, G. M., Salvador-Carulla, L., Madrigal-de León, E. y Lazcano-Ponce, E. (2020). Conocimiento sobre trastornos del neurodesarrollo asociado con la aceptación del modelo de educación inclusiva en docentes de educación básica. Salud Pública de México, 62(5), 569-581. https://doi.org/10.21149/11204

Cámara de Diputados del H. Congreso de la Unión. (2019). Ley General de Educación.

https://www.diputados.gob.mx/LeyesBiblio/pdf/LGE.pdf

Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A. y Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151–1169. https://doi.org/10.6018/analesps.30.3.199361

Martínez-Usarralde, M. J. (2021). Inclusión educativa comparada en UNESCO y OCDE desde la cartografía social. Educación XXI, 24(1), 93–115. https://doi.org/10.5944/educxx1.26444

McKenzie, T. y Toia, R. (2022). An inclusive indigenous approach to curriculum development. International Journal of Inclusive Education, 1–15. https://doi.org/10.1080/13603116.2022.2127493

Mendoza Zuany, R. G. (2018). Inclusión como política educativa: Hacia un sistema educativo único en un México cultural y lingüísticamente diverso. Sinéctica, 50, 1–16.

https://doi.org/10.31391/s2007-7033(2018)0050-009

Moral de la Rubia, J. (2019). Revisión de los criterios para validez convergente estimada a través de la varianza media extraída. Psychología, 13(2), 25–41. https://doi.org/10.21500/19002386.4119

Muthén, B. y Kaplan D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the mode. British Journal of Mathematical and Statistical Psychology, 45(1), 19-30. https://doi.org/10.1111/j.2044-8317.1992.tb00975.x

Nunnally, J. C. (1978): Psychometric theory. (2a. ed.). McGraw-Hill.

Núñez Muñoz, C. G., Niculcar, B. G., Ochoa, M. P. y Costa, P. A. (2022). Análisis de facilitadores y barreras en educación rural en Chile: inclusión en un país segregado. Athenea Digital: Revista de Pensamiento e Investigación Social, 22(2), 1–25. https://doi.org/10.5565/rev/athenea.2654

Organización de las Naciones Unidas. (2006). Convención internacional sobre los derechos de las personas con discapacidad (Art. 2). http://www.un.org/esa/socdev/enable/documents/tccconvs.pdf

Ortiz Jiménez, L. y Carrión Martínez, J. J. (2020). Educación inclusiva: abriendo puertas al futuro. Dykinson.

Revelle, W. (2023). Psych: Procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois. (R package 2.3.3) [Software de cómputo]. https://CRAN.R-project.org/package=psych.

Rodríguez Ceballos, D., Ruiz Betancourt, Y. y Carbonel Rodríguez, I. (2020). La capacitación a líderes locales para la inclusión social de personas con necesidades educativas especiales. Revista Didasc@lia: Didáctica y Educación. 10(6), 81-90. https://revistas.ult.edu.cu/index.php/didascalia/article/view/1084.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02

RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC.

http://www.rstudio.com/.

Sánchez Díaz, M. N. (2021). Ajustes razonables en la universidad. Creencias, prácticas y dificultades para llevarlos a cabo desde la voz de docentes inclusivos. Revista de Fomento Social, 76/1(299), 69-89. https://doi.org/10.32418/rfs.2021.299.4581

Satorra, A. y Bentler, P. M. (1994). Correction to test statistics and standard errors in covariance structure analysis. En A. von Eye y C. C. Clogg (Eds.), Latent variable analysis: Applications for developmental research (pp. 399-419). Sage Publications, Inc.

Satorra, A. (2002). Asymptotic robustness in multiple group linear-latent variable models. Econometric Theory, 18(2), 297-312. http://dx.doi.org/10.1017/S0266466602182041

Schermelleh-Engel, K., Moosbrugger, H., y Müller, H. (2003). Evaluating the fit of structural

equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research, 8(2), 23-74.

Simón, C., Barrios, Á., Gutiérrez, H. y Muñoz, Y. (2019). Equidad, educación inclusiva y educación para la justicia social. ¿Llevan todos los caminos a la misma meta? Revista Internacional de Educación para la Justicia Social, 8(2), 17–32. https://doi.org/10.15366/riejs2019.8.2.001

Stentiford, L. y Koutsouris, G. (2022). Critically considering the “inclusive curriculum” in higher education. British Journal of Sociology of Education, 43(8), 1250–1272.

https://doi.org/10.1080/01425692.2022.2122937

Stone, D. L. (2020). Diversity and inclusion in organizations. Information Age Publishing.

Swinson, J. (2023). The influence of educational psychology on government policy and educational practice. Educational Psychology in Practice, 1–14. https://doi.org/10.1080/02667363.2023.2210279

Tabachnick, B. G. y Fidell, L. S. (2013). Using multivariate statistics (6a. ed.). Pearson.

Tiernan, B. (2022). Inclusion versus full inclusion: implications for progressing inclusive education. European Journal of Special Needs Education, 37(5), 882–890. https://doi.org/10.1080/08856257.2021.1961197

White, Elena. G. (1984). La educación. Pacific Press Publishing Association.

Downloads

Published

2023-07-02

Issue

Section

Original papers

How to Cite

Design and validation of an diagnostic instrument for inclution in educative institutions. (2023). EDUCA. International Journal for Educational Quality, 3(2), 146-167. https://doi.org/10.55040/educa.v3i2.62

Similar Articles

1-10 of 62

You may also start an advanced similarity search for this article.